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When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly
coupled to confined light fields
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We present a microscopic semianalytical theory for the description of organic molecules interacting strongly
with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated
on an equal footing by employing a temperature-dependent variational approach. The interplay between strong
exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer
to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature
quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of
vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities
upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational
dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn
results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling
regime. Thermal effects on several observables are briefly discussed.
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I. INTRODUCTION

Over the last couple of decades, there has been a re-
newed interest in organic molecular materials because of
their high relevance to organic light-emitting diodes [1,2],
organic lasers [3], organic solar cells [4], organic field-effect
transistors [5], and natural/artificial light-harvesting systems
[6,7]. Organic materials are also ideal systems to achieve
strong coupling with confined light fields due to their large
dipole moments and possible high molecular densities. The
strong-coupling regime is entered when the coherent energy
exchange between emitters and light modes becomes faster
than decay and decoherence processes in either constituent.
This leads to the formation of two polariton modes, i.e.,
hybrid eigenstates that have mixed light-matter character,
separated by the Rabi splitting. Strong coupling of organic
molecules has been studied in a wide variety of photonic
systems, among them dielectric microcavities [8§—13], metallic
microcavities [14,15], plasmonic modes on flat [16-18] and
holey surfaces [19,20], and nanoparticle arrays supporting
surface lattice resonances [21,22]. Additionally, the strong
field confinement in plasmonic systems also allows strong
coupling with localized surface plasmon resonances [23-25],
even down to the single-molecule level [26]. The Rabi splitting
in these vastly different systems is all quite similar, with typical
values of hundreds of meV and reaching up to more than 1 eV
[14,27].

Despite the fact that organic molecules offer an excellent
platform to enter the strong light-matter interaction regime, in
most theoretical descriptions they are often modeled as simple
two-level systems whose coupling to the cavity field forms the
usual hybrid light-matter excitations called polaritons. Very
recently, there have appeared a few theoretical works explic-
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itly including intramolecular vibrations (or optical phonons)
[28-33], which were first suggested by Holstein [34] to play an
essential role in the understanding of charge-carrier transport
mechanisms in organic molecular crystals. Along this line,
very recently, Spano [29] studied the effects of exciton-
cavity coupling on the static zero-temperature properties of
J aggregates using numerical diagonalization of the Frenkel-
Holstein model in a truncated subspace with a finite number
of vibrational quanta.

In this work, by using a full quantum model built upon
the Holstein Hamiltonian, we explicitly treat exciton-vibration
coupling and exciton-cavity coupling on an equal footing. Such
amodel is suitable for describing a variety of low-dimensional
organic materials interacting with cavity fields, including
J aggregates [35] and light-harvesting complexes [36,37],
among others. The static properties of the system are then
studied by a generalized temperature-dependent variational
Merrifield transformation that includes the vibrational dressing
of both the exciton and the cavity mode, even though the
latter does not interact with the vibrations directly. Originally
proposed by Merrifield [38] and later developed by Silbey
and co-workers [39,40], the variational polaron transformation
approach provides a convenient and accurate description of
both static (e.g., ground-state) and dynamical (e.g., finite-
temperature charge-carrier mobility) properties of organic
molecular systems, even in the intermediate exciton-vibration
coupling regime. Recently, polaronlike transformations have
also been used in the study of electron-phonon interaction
effects in quantum-dot-cavity systems [41-44].

By taking the additional vibrational dressing of the cavity
mode into account, the temperature-dependent variational
canonical transformation approach employed in the present
work provides an intuitive way to capture the main physics
of the system, and the analytical results enable transparent
physical interpretations of the observed phenomena. It also
gives a natural way to study static and dynamical properties of
organic microcavities at finite temperatures for a wide range
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of parameters. As we will show, the transformation not only
yields renormalization of the exciton hopping integral, the
exciton-cavity coupling strength, and the cavity frequency,
but also induces an effective exciton-vibration coupling in the
transformed frame. At zero temperature, we benchmark our
method by a generalized Toyozawa ansatz and show that both
approaches give accurate results for the ground state for a
wide range of parameters. As a semianalytical method, we are
allowed to derive explicit forms of the ground-state energy
and ground-state wave function. It turns out that the ground
state is a highly entangled state containing both polaronlike
and polaritonlike structures. We thus call the corresponding
quasiparticle a lower polaron polariton (LPP) to distinguish
from the usual lower exciton polariton (LP) [45]. For fixed
material parameters, we calculate the quasiparticle weight,
the photoluminescence line strength, and the mean number of
vibrational quanta as functions of the exciton-cavity coupling
strength. The variation of these quantities with increasing
exciton-cavity coupling indicates that strong exciton-cavity
coupling induces a reduction of vibrational dressing of
the excitons, but an enhancement of vibrational dressing of
the cavity state. We finally study the thermal effects on the
above observables by using the zero-order density matrix of
the system. In the strong exciton-cavity coupling regime, the
system develops a large energy gap between the lowest dark
exciton and the LPP state, yielding an almost temperature-
independent behavior below a crossover temperature.

The rest of the paper is structured as follows. In Sec. II, we
introduce the model and describe our generalized Merrifield
method in detail. In Sec. III, we present the results for the
ground-state properties. Expressions for the ground-state wave
function and the quasiparticle weight are given. Section IV is
devoted to the calculation of several observables including
the photoluminescence line strength and the mean number
of vibrational quanta at both zero temperature and finite
temperatures. Conclusions are drawn in Sec. V.

II. MODEL AND METHODOLOGY
A. Hamiltonian

A typical organic microcavity setup consists of layer-
structured organic materials sandwiched between two di-
electric mirrors that form the microcavity [46]. Most re-
cently, strongly coupled organic microcavities with single/few
molecules have been realized experimentally, where the
volume of the microcavity can be scaled to less than 40 cubic
nanometers by employing a nanoparticle-on-mirror geometry
[26]. For simplicity, we consider an organic microcavity
composed of a single one-dimensional organic molecule
located in a single-mode cavity. The single organic molecule
is assumed to consist of N chromophores. Such a system is
described by the Hamiltonian

H = Hmat + Hc + Hefcs
Hpa = He + Hy + H._y,

He = Z‘Qnalan + Z Jnmalamv Jnm = Jmn>
n n#m

H, = Za)ﬂbj,bn, H. = a)CcTC,
n
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H._, = Z)\nwnaian(bn + b}:)’
n

He .=g Z(aic + cTan). (1)

The material part Hyo of H is the Holstein Hamiltonian
that describes the organic molecule with intramolecular
vibrations. In principle, the molecule also interacts with the
continuous phonon modes from its surrounding environment.
Usually, such molecule-phonon coupling is weak, and we

henceforth neglect the continuous phonon bath for the

sake of simplicity. Here, aj, creates an exciton state |n)

on site n with on-site energy &,, and J,, is the hopping
matrix element between two distinct sites m and n. The
intramolecular vibrational mode on site n with frequency

w, is created by the boson creation operator b;ﬂ. H._, is the
linear exciton-vibration coupling with strength measured by
the Huang-Rhys factor A2. The radiation part is described by
H, with photon creation operator ¢ and cavity frequency ..
The last term in Eq. (1) represents the uniform exciton-cavity
interaction with interaction strength g. Here, we have
employed the rotating wave approximation (RWA) such that
no counter-rotating terms are present and H._. conserves
the total number of excitations. This approximation is valid
provided the ultrastrong-coupling regime is not reached, i.e.,
as long as the Rabi splitting is significantly smaller than the
excitation energies ¢&,, w. (see Ref. [32] for a discussion of
possible effects caused by the breakdown of the RWA).

In this work, we will consider one-dimensional molecules
with uniform on-site energies and nearest-neighbor electronic
couplings, i.e., we set &, = &9 and Jyy, = J 8 p+1. Important
examples include linear J aggregates [35] and the light-
harvesting complex II with a ringlike structure [36,37]. We
assume periodic boundary conditions in the former case. We
have checked that typical amounts of static disorder and
inhomogeneous broadening do not significantly affect the
results presented here. For simplicity, the vibrational modes
are modeled by Einstein oscillators with a single frequency
®, = wo and uniform exciton-vibration coupling A, = A. In
the following, we will restrict ourselves to the single-excitation
subspace with Y, ata, + cte = 1, such that (within the RWA)
we can truncate the number of cavity photons to be, at most,
one. In turn, we can write a,i = |n){vac| and c¢f = |¢)(vac|,
where |vac) is the common vacuum of all the annihilation
operators appearing in Eq. (1), hence an eigenstate of H with
vanishing energy. Note that in the absence of the vibrations
and phonons, the excitonic and cavity part of H resembles an
interacting central spin model with spins 1/2 [47].

The system is translationally invariant in its material part
due to the periodic boundary conditions imposed, which allows
us to work in the momentum space of the molecule through
the Fourier transforms

1 " 1 .
a, = — eay, b, = — b, . )
W 7w 2

We see that only the exciton state with zero momentum, |k =
0) = ag |[vac), couples to the cavity field, so that the total crystal
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momentum

Ptot = Z ka}:ak + Z qb;bq (3)
k q

is still a good quantum number.

B. The generalized Merrifield transformation

In this work, in order to treat the exciton-vibration coupling
and exciton-cavity coupling at finite temperatures on an
equal footing, we employ an extended variational Merrifield
transformation [38] determined by minimizing the Bogoliubov
upper bound for the free energy. As demonstrated for the
Holstein model in Ref. [40], and more recently in Ref. [48§],
these kinds of variational canonical transformation methods
could offer an accurate description of both static properties
(e.g., the ground state, the optical spectra, etc.) and dynamical
properties (e.g., the exciton transport mechanisms) from
intermediate to strong exciton-vibration coupling regimes.

When the cavity field is introduced, it couples only to
the bright exciton, and there is no direct interaction between
the cavity mode and the vibrations (though explicit cavity-
vibration coupling has been considered in Refs. [49-52]).
However, as we will show below, in the framework of the
canonical transformation, the interplay of the light-matter
interaction with the exciton-vibration coupling will induce an
effective cavity-vibration coupling in the residue interaction
in the Merrifield frame. Notice also that it is straightforward
to extend the present method to nonuniform or disordered
systems.

To obtain an optimal zero-order representation of the
Hamiltonian (1) for a wide range of parameters, we propose
the following generalized Merrifield transformation:

H= eSHefs, S = Za a,B, —c CBC, “4)

with vibrational operators

By =Y filbust — bl ). Be=hY (r—b)). (5
! !

The variational parameters { f;} and 4 are chosen to be
real and are determined self-consistently by minimizing the
free energy of the transformed system using Bogoliubov’s
inequality [53],

F<FO+(H1>H07 (6)

for a generic Hamiltonian H = Hy + H;, where F and Fj
are the free energies of H and H,, respectively, and (-)x,
represents the thermal average over the canonical ensemble
defined by H,.

Physically, the coefficient f; quantifies the degree of
dressing of an exciton at site n by the vibrational mode at
site n 4+ [, while & measures the degree of dressing of the
cavity photon by the vibrational mode on each excitonic site,
though the cavity is not directly coupled to the vibrations.
The usual small polaron transformation for the Holstein model
corresponds to the case of f; = §;oA and i = 0. By introducing
the Fourier transforms of { f;},

fo=Y_ " fu, (7)

n
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the extended Merrifield generator can be written in the
momentum space as

1 " n
S=—-—— Zalwaqu(bq - bT—q) = clev/Nh(b — bg)’
VN 4

®)

which clearly converses the total crystal momentum P of the
transformed states.

Besides the circular symmetry, the exciton-vibration system
also holds inversion symmetry, which reduces the number
of independent variational parameters from N to ﬂ +1

A, ie {fo. fr = fa-ts - Sy = fagnfad ({anfl =
IN=1,-- fN = fN+l H foreven (odd) N [40] Usmg the tilde
to indicate the Merrlﬁeld frame, the transformed Hamiltonian
can be separated in a conventional way as

H=Hs+V+H,, 9)
where the system part reads
Hy = Z Eka,iak + [soagao + gx/ﬁ(aéc + clag) + @cclcl.
k0
(10)

Here,

m

Ex =eo+wo<2f,§ —2kf0> +2J cosk (1)

is the vibrationally renormalized exciton dispersion and we
have introduced the renormalized parameters

J=J0|, §=g0O, & =w.+Nhw, (12)

with
® = (eBchn>v — 7%00[}1@21(]‘17},)2
13)

_ _1 Bawg — 2
®|n—n’\ — (eB/x B;x’)y =e¢ 2C0[h 2 Z/(fl—/x f[—n) ,

where (), = ZivTrV{e’/sHv ...} is the thermal average with
respect to the vibrational modes, with 8§ = 1/kgT the inverse
temperature and Z, = Trye #H" the vibrational partition func-
tion. It is clear from Eqgs. (12) and (13) that the interaction with
vibrations will decrease both the effective hopping integral J
and the cavity coupling g, but will increase the effective cavity
frequency w..
The residue interaction part is of the form

V= Z Pk1k7 + Tk1 kz)aklak, =+ Z(achk +c akR )

ky.ko
+ wov/Nhcle(by + b)), (14)
where
J - —ikyn+ikom
P, = ~ %;3'"1_”‘,](63," Bi _ @,)eThntikam
8 —ikn, B.—B,
R, = — e (6‘ n_@)’ (15)
S
T, = 26— fbl, +by)
q ﬁ q —q q)s
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are operators of vibrational degrees of freedom and satisfy
P, = sz r, and T, = T_Tq. We see that the extended Mer-
rifield transformation leads to an effective cavity-vibration
interaction wO«/ﬁthC(bo—i—bg) with the zero-momentum
vibrational mode.

By examining the zero-order system Hamiltonian Hs, it
is clear that only the bright state, the single-exciton state
with zero momentum |k = 0) = a$|vac), couples to the cavity

photon. The N — 1 dark states |k) =aZ|vaC) (k #0) are
themselves eigenstates of Hs. The interaction between the
bright exciton and the cavity mode results in two eigenmodes
which bring Hs into a diagonal form,

Hs =Y Exajay + Evabay + Epabap,  (16)
k#£0

where ag = Cag — Sct and af; = Sa(]; + Cc' are the creation
operators of two new quasiparticles, and the corresponding
eigenenergies are

Eo+a Eo— @\’
Eup = OJZF“’Ci\/NgﬂJr(O—“’C). (17

2

Here, the mixing coefficients C = cos% and S =sin? are

2
determined by
tan® = 2gv/N /(@ — Eo). (18)

Although the two branches of eigenmodes resemble the lower
and upper exciton polaritons [45], we have to keep in mind
that these structures appear in the Merrifield frame, and
hence do not correspond to physical quasiexcitations. Actually,
transforming back to the original frame from the Merrifield
frame will yield physical quasiparticles which are mixtures
of excitonic, photonic, and vibrational degrees of freedom. In
the following, we will refer to the U and D quasiparticles as
Merrifield polaritons.

To obtain the optimal zero-order Hamiltonian Hy, = Hys +
H,, we proceed by minimizing the Bogoliubov upper bound
for the free energy of H at inverse temperature 3,

1 A, -
Fg = _E InTre 770 + (V)y, (19)

where  (-)o = Tr{... e’ﬂHO}/Tr{e”gﬁU}. By construction,
(V)o =0, so that the second term in Eq. (19) vanishes. In
the single-excitation subspace, the Bogoliubov bound can be

expressed in terms of single-particle eigenenergies of H as

1
FB =——1In ZS + Fv, (20)
B
where
Zs= Y b 1)
n={k(#0),U,D}
is the partition function for Hs, and F, = —% InZ, is the

free energy of the free vibrational modes. As Fy is not
dependent on the variational parameters, we only need to
minimize the first term of Eq. (20). To this end, the saddle-point
conditions {0 Fg/df, = 0} and 9 Fg/dh = 0 should be solved
self-consistently. Two forms of the resultant saddle-point
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equations are listed in Appendix A. We emphasize that the
such obtained Fg gives an upper bound for the intrinsic free
energy of the system.

It is convenient to write the residue interaction V in the
basis {|n) = aj|vac)} (1 = k(z 0),U.D),

V=" In)mal Vs

mmn2
Vi = Xy X, [Paco) kins) + Trn)—kna))
+x, Yoo Ricny) + Y X Rl]:(nz)
+ 3, Y woh /N (bo + by, (22)
where

{x,} =1{1,...,1,C,S},
and {k(n)} = {k(z 0),0,0}.

{m}=1{0,...,0, = §,C}, (23)

III. GROUND STATE: THE LOWER POLARON
POLARITON

For the Holstein model without the cavity, one can introduce
the adiabaticity ratio y = wp/|J| and the dimensionless
exciton-vibration coupling strength o = %y)»z. Then, y < 1
(>1) defines the adiabatic (antiadiabatic) regime, and o > 1
(<1) defines the strong (weak) exciton-vibration coupling
regime [54]. Besides the method employed in the present work,
the ground state of the Holstein model has been widely studied
by various analytical/numerical methods, including numer-
ical diagonalization based on the two-particle approximation
[55-58], quantum Monte Carlo simulation [59], density matrix
renormalization-group technique [60], exact-diagonalization
method [61,62], and variational ansatz [63].

In the presence of the cavity and in the zero-temperature
limit, the Bogoliubov bound to be minimized becomes the
zero-order ground-state energy Ep, i.e., the eigenenergy of
the lower Merrifield polariton,

|D) = a},|vac). (24)

In this case, it can be shown that the optimal variational
parameters are given by (see Appendix A)

A 1 () C
Lot 25
Nh  §2 /NS 25)
f C
Jo _ -0 = (26)
Nh VN S
and
A 5v/N C J
L o8 o —cosq) L, 27)
4 wy S wo
for g # 0.

In the absence of the vibrational modes, the ground state of
the exciton-cavity system is simply obtained by diagonalizing
the Hamiltonian H. + H. + H._., yielding the bare upper
polariton and lower polariton,

lpup) = Col0) — Solc), l@rp) = Sol0) + Colc),  (28)

where Cy = cos %‘),So = sin %” with tan6y = Zg«/ﬁ/(a)C —
&0 —2J). When the vibrational bath is present, the
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corresponding physical ground state can be obtained by
transforming | D) back to the original frame,

[Yiep) = e | D)

ol ikn =y Xy (e bl = - yeib,)
> e~ e YN —qd q—J—q q |k)
n k

+Ce VNG b ¢y (29)

We see that [y pp) has a similar structure to the free LP
state given by Eq. (28), but includes the vibration-induced
effects through the vibrational coherent states. The first term
on the right-hand side of Eq. (29) mimics a polaron state
with amplitude S, while the second term corresponds to
the vibrational dressing of the cavity state with amplitude
C. Furthermore, unlike the bare LP state which only has a
component of the bright exciton |0), the exciton-vibration
coupling also mixes the excitonic dark states |k) (k # 0)
into |yrpp). For this reason, we refer to the quasiparticle
corresponding to | pp) as the lower polaron polariton (LPP).

The above form of the LPP state can be compared with the
following generalized Toyozawa ansatz [54,64]:

! i —ignpl _gxgiqny,
[YTA) = —= e—lknq)kezq(é,,e q—64¢ q)|k>
Wl

1 .
= Db E D), (30)

JN

which recovers |y pp) in the case of

S
q)k - = fq

T
®. =CVN, & =—hVN.

The Toyozawa ansatz (TA) is believed to provide accu-
rate results for the ground-state wave function and ground-
state energy of the Holstein model [54,63,65]. Since there are
more variational parameters in |r1a) than those in |y pp), the
ground-state energy Eta obtained by TA is slightly lower than
Ep. However, we emphasise that the Merrifield transformation
based on minimizing the Bogoliubov free energy also applies
to finite temperatures.

From the variational principle, Ep provides an upper
bound for the true ground-state energy of the system. A
conventional procedure for obtaining a lower approximated
ground-state energy is to calculate the second-order energy
correction in terms of the residue interaction V [40]. For
small systems, we have checked numerically that the second-
order correction to Ep gives a more accurate approximation
for g+/N/wy < 1, but underestimates the true ground-state
energy in the strong exciton-cavity coupling regime with
relatively large g+/N /wo. This can be illustrated by studying
a molecular dimer with N = 2 chromophores, for which the
ground-state energy can be obtained exactly by numerically
diagonalizing the Hamiltonian in a truncated vibrational space
with Y°,_, , bIb; = Mipgy vibrations.

Figure 1 shows the calculated ground-state energy of
a molecule dimer by the exact numerical diagonalization
with up to Mpx = 20 vibrations (FEexaet), the variational
Merrifield transformation without and with the second-order

3D
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FIG. 1. The ground-state energy of a molecular dimer interacting
with a single cavity mode as a function of the collective exciton-cavity
coupling g+/N/wy for two different sets of excitonic coupling:
(@) J/wog=—1/4 and (b) J/wo = —2. Results from the exact
numerical diagonalization (red line), the variational Merrifield trans-
formation without and with the second-order energy correction (solid
black and dotted black lines), and the Toyozawa ansatz (blue line)
are presented. The insets in each figure show the magnifications in
the (i) weak and (ii) strong exciton-cavity regimes. Other parameters:
A=1,wg=1¢eV, g9 =w, =0¢eV, and M, = 20.

energy correction (Ep and E..y; see Appendix B), as well
as the Toyozawa ansatz (E1a). We set A = 1, wp = 1 eV, and
&0 = w. = 0 eV, namely, a cavity frequency resonant with
the on-site excitonic transition. The results for two sets of
nearest-neighbor interactions J/wy = —1/4 and J/wg = —2
are presented in Figs. 1(a) and 1(b), which correspond to
the antiadiabatic strong exciton-vibration coupling limit and
adiabatic weak-coupling limit, respectively.

Insets (i) and (ii) in Figs. 1(a) and 1(b) display the
magnification in the weak and strong exciton-cavity coupling
region, respectively. In both cases, we find that the zero-order
energy Ep from the Merrifield transformation overestimates
the ground-state energy in the weak exciton-cavity regime
g\/i J/wo < 1, while the second-order corrected energy Ecorr
gives a more accurate one. However, E; begins to show
large deviation from the exact value E.x,e and underestimates
the true ground-state energy when one enters the strong
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FIG. 2. (a) The ground-state energy Eppp of the LPP as a
function of the collective exciton-cavity coupling g+/N /w for two
different excitonic couplings: J /wy = —1/4and J /wy = —2.(b) The
evolution of the collective vibrational dressing parameter f; of the
excitons and the cavity dressing parameter N with g+/N /w,. Other
parameters: N = 100, wy = 0.17 eV, g9 = 2 eV, and A = 1. In both
cases, the cavity frequency is set to be resonant with the ground-state
energy of the molecule in the absence of the cavity.

cavity coupling regime g+/2/wo ~ 1. In contrast, both the
zeroth-order energy Ep and the Toyozawa variational energy
Eta become closer to Egx,c in this regime. Since the first-order
energy correction vanishes by construction, while the second-
order energy correction is always negative, it is expected that
higher-order corrections are needed to get a more accurate
ground-state energy for large g+/N/wy. As we are mainly
interested in the strong exciton-cavity coupling regime, we
will henceforth take

Erpp ~ Ep (32)

as an approximation of the ground-state energy. Correspond-
ingly, we take the LPP wave function given by Eq. (29) as
an approximated ground state in order to obtain simple and
intuitive analytical expressions for observables discussed in
the following.

Figure 2(a) shows the ground-state energy Eppp of the
LPP as a function of the dimensionless exciton-cavity cou-
pling strength g+/N /e, for two different excitonic couplings

PHYSICAL REVIEW B 94, 195409 (2016)

J/wy = —1/4 and J/wy = —2. Other molecular parameters
are taken as N = 100, wg = 0.17 eV, gg =2 eV, and A = 1.
Note that J/wy = —1/4 is a typical value for J aggregates
[29] and the molecular system thus lies in the small-polaron
limit, i.e., the strong exciton-vibration coupling antiadiabatic
limit [54]. The cavity frequency is set to be resonant with
the ground-state energy in the absence of the cavity [which is
calculated by using the Toyozawa ansatz given by Eq. (30) in
the g — O limit for N = 100], i.e., . = Eta(N = 100,g =
0) = 1.7864 eV and 1.2617 eV for J /wy = —1/4 and J /wy =
—2, respectively. As expected, the coupling between the bright
exciton and the cavity mode leads to the formation of the LPP
state which lies below the pure polaron state of the molecule.

In Fig. 2(b), we plot the evolution of fy = >, fu and
the cavity dressing parameter Nh with the exciton-cavity
coupling g+/N /wy. The decreasing of f with increasing g
clearly indicates a reduced vibrational dressing of excitons
in the strong-coupling regime. We note that the decoupling
of vibrational degrees of freedom from the excitons by
strong cavity coupling has also been reported by Spano
and co-workers [29,30] by using numerical diagonalization
of the Holstein Hamiltonian. It is intriguing to note that
for this resonant case, the cavity dressing parameter Nh
increases monotonically as g increases, which means that the
cavity mode, even though it is not coupled to the vibrations
directly, might become more dressed by the vibrations as the
exciton-cavity coupling increases.

However, as can be seen from Eq. (29), the degree of the
vibrational dressing of the cavity is measured by both the
amplitude C and the dressing parameter Nh. To this end, we
plot in Fig. 3 the absolute values of the amplitudes C and S
(Cp and Sy) in the LPP |y pp) (the bare LP |¢pp)) as functions
of g+/N/wy for both resonant and nonresonant cases. The
behavior in the weak cavity coupling region g+/N /wy < 1 can
be understood from investigating the saddle-point equations
(25) and (26). As g+/N /wy — 0T, we have

0(&. — Eo)

Nh =~ A\ — )
1 + wo/[2(&c — Ep)]

(33)

and
A
1+ 2(Eg — @)0(Eg — @&c)/wo

where 6(x) is the Heaviside step function.

For the resonant case, the polaron part and the dressed
cavity part of |y pp) are roughly equally weighted for weak
exciton-cavity coupling [Fig. 3(a)] with |C| =~ |S| =~ 1/ V2.
As g increases, the cavity dressing parameter N/ increases
monotonically, while the amplitude |C | has no dramatic change
even up to the strong-coupling regime. For the nonresonant
case with the cavity frequency w, relatively large, so that the
condition @, — Ey > 0 is fulfilled [Fig. 3(b)], we observe a
slow drop of Nh with increasing g. However, the increase of
the amplitude |C| from O to its saturated value in the strong-
coupling region might still indicate an enhanced dressing of the
cavity field. For the nonresonant case with a red-detuned cavity
frequency, both the collective molecular dressing parameter
fo and the cavity dressing parameter increase as g+/N/w
increases, so it is expected that the exciton-cavity coupling can
enhance the dressing of both the exciton and the cavity. As we

fo~

(34)
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FIG. 3. Absolute values of the mixing coefficients C and S (Cy
and Sy) in the LPP state |y pp) (the bare LP state |¢rp)), and the
quasiparticle weight Z; pp as functions of gﬁ /wy for (a) a resonant
cavity mode with w, = 1.7864 eV, (b) w. = 2 eV, (c) w. = 1 eV. Also
shown are the dressing parameters Nk and fy. Other parameters:
N =100, 0y =0.17eV,ep =2¢V, J/wy = —1/4,and A = 1.

will see in the next section, a better measure for the degree of
vibrational dressing is the mean vibration number on a specific
exciton/cavity state, which involves both the amplitude and the
dressing parameter.

In order to see the crossover with the cavity detuning in
the weak cavity coupling region more clearly, we plot in
the left panel of Fig. 4 the ground-state energy as a function
of the cavity frequency w, for fixed exciton-cavity coupling
strength g+/N/wy = 0.2. A crossover can be seen around
the resonant frequency 1.7864 eV. The right panel of Fig. 4
shows the behavior of the amplitudes |C| and |S]|, and the
dressing parameters N/ and f;. For a red-detuned cavity with
frequency w. < 1.7864 eV, the LPP state | pp) is dominated
by the cavity component with a small vibrational dressing. For
a blue-detuned cavity, the ground state behaves more like a
polaron. However, the cavity becomes more dressed though
its amplitude |C| decreases with increasing w.. Note that the
profiles of Nh and f; approach the limiting forms given by
Egs. (33) and (34) if g\/N /o is lowered down further.

PHYSICAL REVIEW B 94, 195409 (2016)
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FIG. 4. Left panel: The ground-state energy Ejpp as a function
of the cavity frequency w.. Right panel: Absolute values of the
amplitudes |C| and |S|, as well as the parameters f, and Nh
as functions of w.. The exciton-cavity coupling is set to be in
the weak-coupling regime as g+/N/wo = 0.2. Other parameters:
N =100, w9 =0.17eV,ep =2¢V, J/wy = —1/4,and 1 = 1.

Intriguing enough, it can be seen from Fig. 3 that C and
S tend to be consistent with Cy and S; as g\/ﬁ /o increases
for all three cases considered. This behavior can be better
understood by introducing the following quasiparticle weight
for the LPP:

Zipp = [(Grpl¥iee) |, (35)

which measures how similar the LPP wave function |y pp) is
to the vibration-free LP wave function |¢p). It is easy to show
that

2

Zipp = |S08@ + CoCe 2"V, (36)

where ®yp = ©(h =0). As can be seen in Fig. 3, Zpp
approaches nearly unity monotonically as the exciton-cavity
coupling increases, which means that the LPP behaves like a
vibration-free LP in the strong-coupling regime.

Actually, by investigating Egs. (25)—(27) in the ultrastrong-
coupling limit gﬁ/wo — 00, we have C ~ —S ~ l/ﬁ,
Nh =~ fo~rS8?~1/2,and f, ~ 0 (q # 0), which gives the
asymptotic form of |y pp),

1 At
[Yep) ~ —=(l¢) — [0))e” 27 P07 |vac, )

V2

_xpt
~ |prp)e” v 07 |vac,), 37)

where |vac,) denotes the vibrational vacuum state.

Equation (37) indicates that in the ultrastrong-coupling
limit, the LPP state tends to be a separable state, which
is consistent with the bare LP state dressed by the zero-
momentum vibrational mode. Furthermore, the vibrational
dressing becomes negligible for large aggregates with N > 1.
Correspondingly, the quasiparticle weight approaches

)\2
Zipp X e W, gv/N/wy — 0. (38)
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IV. THE PHOTOLUMINESCENCE LINE STRENGTH AND
THE MEAN NUMBER OF VIBRATIONS

A. Zero temperature

In order to better understand the influence of strong exciton-
cavity coupling on the molecular system, it is instructive to
study the variation of several observables with the cavity
coupling strength. In this section, we calculate the photolu-
minescence line strength and the mean number of vibrations
using the results obtained in the last section.

After photoexcitation, a J aggregate loses its excess energy
and reaches the bottom of the exciton band quickly, so that
the emission process originates mainly near the band bottom.
When the cavity mode is present, the LPP state | pp)
takes the role of such a band bottom exciton. The 0 — &
photoluminescence line strength 7°~¢ arising from transitions
between |1 pp) and the excitonic ground state with & vibrations
is defined as [29]

1
1% = — 3" ling}alyues)l’, (39)
s anq=é

where the transition dipole moment operator is given by

A=) (In)(vac| + vac){n]). (40)

By inserting Egs. (29) and (40) into Eq. (39), we obtain (see
Appendix C)

S©)?
1 = G Y6 @1
where
Gu=Gr=)Y " ffy, 42)

q

The first three cases for & = 0,1, and 2 can be calculated as

1970 = N(S©)?, (43)
171 = (860 /), (44)

_ (8Op)? z z
17 == ;o‘qf_,,)z. (45)

The zero-temperature 0 — & photoluminescence line
strength 0-¢ for & =0,1, and 2 is shown in the first three
panels of Fig. 5, where results for both the resonant and
nonresonant cases are presented. For the blue-detuned cavity
frequency w. = 2 eV, we observe a nonmonotonic behavior in
the 0 — 0 line strength 7°~° with increasing g. For the resonant
and red-detuned cavity, an amplification of 7°~° is observed.
The last panel of Fig. 5 shows the line strength ratio,

1071 -

No = Jo (46)
which is proportional to an effective Huang-Rhys factor
[29] and decreases with increasing exciton-cavity coupling
for resonant and blue-detuned cavity frequencies. However,
the increase of this ratio for a red-detuned cavity shows
that the cavity coupling can actually increase the effective

PHYSICAL REVIEW B 94, 195409 (2016)
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FIG. 5. The zero-temperature photoluminescence line strength
1070, 191 192 and the strength ratio N1°~!/1°70 calculated using
Eq. (41). The results for three sets of cavity frequencies w, = 2 eV
(solid line), w. = 1.7864 eV (dashed line), and w. = 1 eV (dotted
line) are shown. Other parameters: N = 100, wy = 0.17 eV, g =
2eV,J/wp=—1/4,and A = 1.

exciton-vibration coupling from weak to intermediate cavity
coupling regions.

The above results can be further demonstrated by studying
the mean number of vibrations in the LPP state, which is an
important measure of vibrational dressing of specific exciton-
cavity states [66],

Ny = (Yrepl ) blbyltiee). (47)
q

Straightforward calculation gives (see Appendix C)
Gy ¢
Ny = (SO0’ te ™ + NC??
= NN + N©, (48)
where
N© = NC*n? (49)

is the mean number of vibrations projected onto the cavity
state |c), and

NG = (5@ ~2e (50)

is the mean number of vibrations in the cloud surrounding a
local exciton, which is identical for all sites due to the circular
symmetry of the molecule.

The left panels of Figs. 6(a) and 6(b) show the total
mean number of vibrations N, in |y pp) for w. = 1.7864 and
2 eV, and w. = 1 and 1.5 eV, respectively. In contrast to the
monotonic decreasing of N, for the resonant and blue-detuned
cases, a red-detuned cavity induces an increase of N, from the
weak- to intermediate-coupling region. As the exciton-cavity
coupling is increased further up to the strong-coupling regime,
N, will decrease from its maximal value at a crossover
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FIG. 6. The total mean number of vibrations (left panels) and
mean vibration numbers on the cavity state and the local exciton state
(right panels) for (a) w. = 1.7864 and 2 eV, (b) w. = 1 and 1.5 eV.
Other parameters: N = 100, wy = 0.17eV, g9 =2eV, J/wy = —1/4,
and A = 1.

coupling strength. The decrease of N, with increasing g
indicates that the overall vibrational dressing in | pp) tends
to fade away in the strong-coupling regime.

In the right panels of Fig. 6, we plot the corresponding
results for the mean vibration numbers on the cavity state and
on the local exciton state. For all cases considered, the mean
number of vibrations N{© on the cavity state increases mono-
tonically with increasing g~/ N /wy, indicating an enhancement
of vibrational dressing of the cavity mode. This in turn leads
to a drop of N in the strong-coupling regime, implying
an exciton-cavity coupling induced vibrational decoupling of
excitons. It is interesting to note that the total mean vibration
number N, shows a similar trend as N for both the
blue-detuned and red-detuned cases.

B. Thermal effects

As mentioned in Sec. I, the temperature-dependent vari-
ational Merrifield transformation method also allows us to
study static properties of the system at thermal equilibrium.
To calculate the thermal average of observable O at inverse
temperature § = 1/kgT, we turn to the Merrifield frame
where the zero-order density matrix p(8) is both separable
and diagonal,

p(B) ~ po(B) =

(Ze PEn|n) nI) P (51)

PHYSICAL REVIEW B 94, 195409 (2016)

where Zg and Z, = 1/(1 — e Po)N are the partition func-
tions for the exciton-cavity system and the vibrational bath,
respectively. The thermal average of O can thus be calculated
by

0(B)

After a straightforward calculation, we arrive at the following
expressions for the finite-temperature O — 0 and 0 — 1 photo-
luminescence line strength (see Appendix C):

2
"= z®; ZZ E 2ok ne= et (53)
S

= TrsTry[5(B)e® Oe™°1. (52)

and

_ _ﬂ —Bwy
I e ﬁE,,x ezk(n)n e
ZSZ ZZ

2
x e P |:N + N(G,, coth Bwy — Go)] (54)

The finite-temperature extension of the mean number of
vibrations on the cavity state and on the local exciton state
has simple forms,

Z,
N = ZXN@ + h?), (55)
Zs
and
12, Go
N& = Nii , 56
- Zs< + N) (56)

where Z, and Z, are defined in Eq. (A10), and 77 = 1/(ePo —
1) is the mean occupation number of the free vibrational
bath. In the zero-temperature limit, we have Z,/Zs — s2,
Z,/Zs — C 2, and 7 — 0, and hence the zero-temperature
results given by Egs. (48)—(50) are recovered. Actually, the
factor ), e_ﬂE'7x§eik(”)”/Zs in 1979 and 79-!, and the ratios
Zy)y/Zs in N and N8, are determined by the energy gap
between the LPP state and the lowest excitonic dark state
with wave vector |k = 27 /N), namely, AE = Ey;/y — Ep,
which is much higher than the thermal energy kT for
relatively strong exciton-cavity coupling g+/N/wy > 1. We
thus expect that the variational parameters { fq} and & are close
to those in the zero-temperature limit and almost temperature
independent.

Figure 7(a) shows the line-strength ratio N1°~' /1970 as a
function of temperature 7 for fixed exciton-cavity coupling
gv/N/wy = 4. At low temperatures the ratio approaches the
zero-temperature result, fo As the temperature increases,
this ratio increases due to the decrease of I°° and in-
crease of 1°~!. This temperature dependence of 71°~ and
I°~! originates from the reduction of the LPP population
and thermal excitation of vibrations at high temperatures.
Figure 7(b) shows the temperature dependence of the mean
number of vibrations. We see that N©, N and N, all
increase with increasing temperature. At low temperatures,
the mean occupation number 7 is much smaller than K%, so
that N© ~ NC?h?. As the temperature is increased across a
turning point at which 7 is comparable with 42 [the inset of
Fig. 7(b)], the thermal occupation of vibrations dominates and
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FIG. 7. (a) The line-strength ratio N1°~'/I1°°. (b) The total
mean number of vibrations Ny, N9, and NN&© as functions
of temperature T for fixed exciton-cavity coupling g+/N/wy = 4.
The dotted curve in (a) represents the value of N1°~'/I°7! in the
zero-temperature limit, f7Z. The inset in (b) shows the temperature
dependence of the vibration occupation number 7 and k2. Other
parameters: N = 50, wy = 0.17eV,e9 =2¢eV, J/wy = —1/4,1 =1,
and w. = 1.7864 eV.

N increases rapidly to N© ~ N C?i in the high-temperature
limit.

J
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Thus, due to the large energy gap formed in the strong
exciton-cavity coupling region, the static properties of the
system in thermal equilibrium are almost temperature inde-
pendent below a crossover temperature which is related to
the degree of vibrational dressing of the cavity and excitons.
However, thermal excitation of vibrations dominates the
behavior above the crossover temperature.

V. CONCLUSIONS

In this work, we developed a microscopic theory for
describing organic molecules coupled to a single cavity mode.
The molecule is modeled by the Holstein Hamiltonian that
explicitly includes the intramolecular vibrations. By employ-
ing a temperature-dependent variational approach combining
a generalized Merrifield transformation with the Bogoliubov
inequality, we could treat the exciton-vibration coupling and
exciton-cavity coupling on an equal footing. The generalized
canonical transformation we proposed takes the vibrational
dressing of both the excitons and the cavity into account.
The ground state of the system (within the single-excitation
subspace), which we refer to as a lower polaron polariton,
is shown to be a hybrid state of excitonic, photonic, and
vibrational degrees of freedom, and contains both polaronlike
and polaritonlike structures.

Using the above results, explicit expressions for the
quasiparticle weight, the photoluminescence line strength,
and the mean number of vibrations are obtained in terms of
the optimal variational parameters. The dependence of these
quantities upon the exciton-cavity coupling strength shows
that the cavity state gains a profound vibrational dressing in
the strong cavity coupling regime, while the excitons tend to
decouple from the vibrations. Finally, we study the temperature
dependence of the photoluminescence line strength and mean
number of vibrations and show that these quantities are not
affected by the temperature at relatively low temperatures, but
mainly controlled by the thermal excitation of vibrations at
high temperatures.
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APPENDIX A: THE SADDLE-POINT EQUATIONS

We assume N is even; the analysis for odd N is similar. The minimized Bogoliubov free energy given by Eq. (19) can be

reached at the saddle point that is determined by the stationary conditions d Fg/df, = 0, foro = 0,1, ..

Ag

Z—S_

where

. ,%, which result in

0, (AD

Ag=2) e Pt |:(f0 — Mo — 2(fo — f1)J cos k coth %} + e PF {(1 + cos 6)[(f0 — Mo — 2(fo — f1)J coth %]

k£0
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+sin( fo — B)gv/N coth %} + eﬁED{(l - cosG)|:(f0 — Mwo — 2(fo — f1)J coth @}
—sinB(fy — h)gv/N coth % } (A2)
Ay = ZZeﬁEk[f,szo — 2(f¥ — f%_l)fcoskcoth %]
k0
—i—e—ﬁEU{(l + cos 9)|:fzzva)o - 2(f% — f%,l)fcoth %] +sinf(fy — h)gv/N coth %}
—i—e—ﬁED{(l — cos 9)|:fzzva)o - 2(f% — f%,l)fcoth %] —sinf(fy — h)gv/N coth %}, (A3)
and
A, = ZzefﬁEk [fnwo — 2fy = fu—1 — fas1)J cosk coth %]
k0
+e—ﬁEU{ sin0(f, — h)gv/N coth % T+ cos0)|:fnwo — 2fs = fat = far)J coth %“
—l—e‘ﬁED{ — sin6(f, — h)gv/N coth % +(1 - COS@)|:fnw0 = Qfa = fam1 = [+ coth %} }, (A4)
forn = 1,2,...,% — 1.
In addition, 0 = 0 F/0h gives
ﬂ =0 (AS)
Zs

where

A, = e PEU [(1 — cos§)Nhao — sin6( fy — Nh)gv/N coth @]

e PED [(1 + cos O)Nhwy + sin6( fy — Nh)g~/N coth %] (A6)

An equivalent alternative form of the saddle-point equations can be obtained through linearly combining these equations,
yielding

A B B2 (A7)
Nh Zx g\/NCOth @ ny '
io @ Zy (A8)
Nh g\/NCOth % ny '
and
A g+/Ncoth 22 7 J coth 82 1
Tzl—g—z—)—Z(l—cosq)—z L= — > e (1 —cosk) |, (A9)
fq wo Z, Zy k20
for g # 0. Here,
Zo=Y xpe B Zy="yle P Zy = xyye P (A10)
n n n

Note that ﬁ, = f_q is real, and Eqgs. (A7)-(A9) should also be solved self-consistently. In the zero-temperature limit, only
terms related to Ep in Egs. (A7)—(A9) survive; we then obtain Egs. (25)—(27) in the main text.

(

APPENDIX B: SECOND-ORDER ENERGY CORRECTION  is
TO Ep

oo
From second-order time-independent perturbation theory, Ecowr = Ep + Z A, (B

the second-order corrected energy E.. of the LPP state =1
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with the v-vibration contribution

|(n; {ng}IVID)I?

—_—, (B2)
Ep — (E, + vay)

N, ng=v

i
where the dressed state |n;{n,}) = ]_[q %M) has n, vi-
I‘lq.

brations in mode ¢. After a tedious but straightforward
calculation, we obtain
S2
}, (B3)

1+ wo/(Ey — Ep)

A= —4C2w0Nh2[1 -

forv =1, and

1 1

Au = VINV Xn: ED — (En —+ ])0)0)
X (2(Sx, J)H{1 + (=1)" cos[k(M I Fokn)
+28x, TGV N[Cxy + (—1)" $¥,1G} 1)
+@VNYICxy + (=)' Sy, PK] ). (B4)

for v > 2, where we have defined

1 .
ﬂm=N§}WQQ—GH—GHN,
Z ipn (G/ _G/ 1)v+(G;, _
"o ipn /v
’Cv,p = ﬁ;e‘” Gn .

Here, G, is given by Eq. (42) and

G,=> e"ff,. G
q

G, )" 1(BS)

=Y e"ff,.  (B6)
q

with

fi = fy = 8,0hN. (B7)

APPENDIX C: DERIVATION OF THE
FINITE-TEMPERATURE PHOTOLUMINESCENCE LINE
STRENGTH I°-% AND THE MEAN NUMBER
OF VIBRATIONS

At finite temperatures, we will adopt the zero-order thermal
equilibrium density matrix for the calculation of thermal
averages of observable O, which is assumed to be in a
separable form,

0 =0%0", (CDH

where O° and O are operators of exciton/cavity and vibra-
tional degrees of freedom, respectively. Important examples
of observables in the above form include the 0 — & photolu-
minescence line strength 71°% (with 0% =10)(0] and 0" =
ZZ ny=t [{n4}) ({ny}]) and the mean vibration number pro-

jected onto state |n) (with 0% = |n)(n| and O" = Zq bj]bq).
It turns out to be convenient to work in the Merrifield frame

PHYSICAL REVIEW B 94, 195409 (2016)
where the zero-order density matrix is diagonal and separable,

P(B) ~ po(B) = Pspvs

B 1

ps = —- BEs [y (nl, (C2)
S
1

5 _ _ ,—BH,

Pv Zve ,

where 8 = 1/kpT isthe inverse temperature, and Zs and Z, =
1/(1 — e P*0)N are the partition functions for the exciton-
cavity system and the vibrational bath, respectively. The
representation of O in the Merrifield frame is

0 = [c)c|0Se % 0%e™ + 3 Im)(n| 0SB 0¥e™

mn
Z le)( n|0S

B:QYeP + H.c.), (C3)

where OAfy = (x|O3|y) for x,y = c or {n}, and H.c. stands for
the Hermitian conjugate. The thermal average O(p) at inverse
temperature 8 then can be calculated in the Merrifield frame
as

0(B) = TrsTr,[5(8)0]
= Ofcﬁs,cc (eiBC OAVeBC >V
+> 05, Bsamle B OvePr),

+2Re Y OF psncle P 0%e™),.  (C4)

Let us first calculate the finite temperature 0 — £ photolu-
minescence line strength,

0-& _ —ﬂE n oIk n—m)
re Y XY
anq =£ mn 1
x ({ng}le® pye™Prl{ng}). (C5)

To calculate the matrix element in the second line of the above
equation, we invoke the following two identities:

abT—a*b —obfb —(yb*—y*b)
_ _ —oN\,T T *__ %k ,—0
—e —3(eP+y? )o@ ye? Jla—ye )b ,—pblb (y*—ae )b7

(Co)
with b a bosonic annihilation operator, and

({ny}eXs agby o=B X4 biby o2 Yaby {ng})

- ( V) ‘ !
_Ze e ST “‘f 4 mq!(n';"_mq)!.

Yomg=x 4

€N
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After some algebra, we arrive at

PHYSICAL REVIEW B 94, 195409 (2016)

[0-¢ — ZsZ ZZe_ﬁEﬂx pikom = 5, 1 f*%)Ze—ﬂwu(s Y 1—[<|f,, )

(_267/3(1)0 + eiqn672/3w0 + e*iqn)mq
X

|
ng:

Z”q £ mg=x 4

mgy! myl(ng —my)!

(C3)

At zero temperature 7 = 0, only the term with x = £ survives in the summation over x, and we hence recover Eq. (41) in the
main text. For large &, it is difficult to obtain 7°~¢ in closed form. However, 7%~ and 71°~! can be easily calculated and we thus

obtain Eqgs. (53) and (54) in the main text.

We next turn to the calculation of the mean number of vibrations N® in an arbitrary exciton/cavity state |a). By inserting
0% = |a)(aland 0" =Y, b}b, into Eq. (C4), and using the following identity:

1 t . -
Z_Trb[e—ab beabT—a bbTbe—(be—y b)]

b
= oY) @y Abmter oy 11 gy (14 np)e? + ay*ny — (1 + mp)(al? + |y D), (C9)
with ny = 1/(e’ — 1) we arrive at
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where i = 1/(ef® — 1) is the mean occupation number of the free vibrational bath.
By choosing a = ¢ and a = n, we obtain the mean vibration numbers on the cavity state [Eq. (55)] and on the local exciton

state [Eq. (56)].
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