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Abstract: We present an overview of the framework of
macroscopic quantum electrodynamics from a quantum
nanophotonics perspective. Particularly, we focus our
attention on three aspects of the theory that are crucial for
the description of quantum optical phenomena in nano-
photonic structures. First, we review the light-matter
interaction Hamiltonian itself, with special emphasis on its
gauge independence and the minimal and multipolar
coupling schemes. Second, we discuss the treatment of the
external pumping of quantum optical systems by classical
electromagnetic fields. Third, we introduce an exact,
complete, and minimal basis for the field quantization in
multiemitter configurations, which is based on the so-
called emitter-centered modes. Finally, we illustrate this
quantization approach in a particular hybrid metallodi-
electric geometry: two quantum emitters placed in the vi-
cinity of a dimer of Ag nanospheres embedded in a SiN
microdisk.
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1 Introduction

In principle, quantum electrodynamics (QED) provides an
“exact” approach for treating electromagnetic (EM) fields,
charged particles, and their interactions, within a full
quantum field theory where both matter and light are
second quantized (i.e., both photons and matter particles
can be created and annihilated). However, this approach is
not very useful for the treatment of many effects of interest
in fields such as (nano)photonics and quantum optics,
which take place at “low” energies (essentially, below the
rest mass energy of electrons), where matter constituents
are stable and neither created nor destroyed, and addi-
tionally, there are often “macroscopic” structures such as
mirrors, photonic crystals, metallic nanoparticles etc.
involved. Owing to the large number of material particles
(on the order of the Avogadro constant, =6 x 10%), it then
becomes unthinkable to treat the electrons and nuclei in
these structures individually. At the same time, a suffi-
ciently accurate description of these structures is usually
given by the macroscopic Maxwell equations, in which the
material response is described by the constitutive relations
of macroscopic electromagnetism. In many situations, it is
then desired to describe the interactions between light and
matter in a setup where there are one or a few microscopic
“quantum emitters” (such as atoms, molecules, quantum
dots, etc.) and additionally a “macroscopic” material
structure whose linear response determines the local
modes of the EM field interacting with the quantum
emitter(s).

The quantization of the EM field in such arbitrary
material environments, i.e., the construction of a second
quantized basis for the medium-assisted EM field that takes
into account the presence of the “macroscopic” material
structure, is a longstanding problem in QED. The most
immediate strategy is to calculate the (classical) EM modes
of a structure and to quantize them by normalizing their
stored energy to that of a single photon at the mode fre-
quency, hw [1]. However, an important point to remember
here is that, even for lossless materials, EM modes always
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form a continuum in frequency, i.e., there exist modes at
any positive frequency w. Consequently, there are in gen-
eral no truly bound EM modes, and what is normally
thought of as an isolated “cavity mode” is more correctly
described as a resonance embedded in the continuum,
i.e., a quasi-bound state that decays over time through
emission of radiation. An interesting exception here are
guided modes in systems with translational invariance
(i.e., where momentum in one or more dimensions is
conserved), as modes lying outside the light cone w = ck
then do not couple to free-space radiation [2]. An additional
exception is given by “bound states in the continuum” [3],
which arise owing to destructive interference between
different resonances.

As a further obstacle to a straightforward quantization
strategy as described above, the response functions
describing material structures are necessarily dissipative
owing to causality (as encoded in, e.g., the Kramers—Kro-
nig relations). When these losses cannot be neglected,
quantization is complicated even further by the difficulty to
define the energy density of the EM field inside the lossy
material [4-6].

Given all the points above, it is not surprising that there
are many different approaches to quantizing EM modes in
lossy material systems [2, 7-15]. In the following, we give a
concise overview of a particularly powerful formal
approach that resolves these problems, called macroscopic
QED [16-24]. While there are excellent reviews of this
general framework available (e.g., [22, 23]), we focus on its
application in the context of quantum nanophotonics and
strong light-matter coupling. In particular, we discuss the
implications and lessons that can be taken from this
approach on gauge independence and, in particular, the
role of the so-called dipole self-energy term in the light-
matter interaction in the Power-Zienau—-Woolley (PZW)
gauge, which has been the subject of some recent contro-
versy [25-38]. We then review in detail a somewhat
nonstandard formulation of macroscopic QED that allows
one to construct a minimal quantized basis for the EM field
interacting with a collection of multiple quantum emitters.
This approach was first introduced by Buhmann and
Welsch [39] and subsequently rediscovered independently
by several other groups [40-44]. The fact that this very
useful approach has been reinvented by different re-
searchers over the past decade or so partially motivates the
current article, which intends to give a concise and
accessible overview, and presents some explicit relations
that have (to our knowledge) not been published before.
We also note that with “minimal basis,” we are here
referring to a minimal complete basis for the medium-
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assisted EM field, i.e., this basis contains all the informa-
tion about the material structure playing the role of the
cavity or antenna, and no approximations are made in
obtaining it. This then makes it appropriate to serve as a
starting point either for numerical treatments [45, 46] or for
deriving simpler models where, e.g., the full EM spectrum
is described by a few lossy modes [47].

In the final part of the article, we then present an
application of the formalism to a specific problem, a hybrid
dielectric-plasmonic structure [14, 48, 49]. In particular, we
consider a dimer of metallic nanospheres placed within a
dielectric microdisk, a geometry that is similar to that
considered by Doeleman et al. [50].

2 Theory

Macroscopic QED provides a recipe for quantizing the EM
field in any geometry, including with lossy materials. One
particularly appealing aspect is that the full information
about the quantized EM field is finally encoded in the
(classical) EM dyadic Green’s function G(r,r’,w). While
there are several ways to derive the general formulation
(see, e.g., the review by Scheel and Buhmann [22] for a
discussion of various approaches), a conceptually simple
way to understand the framework is to represent the ma-
terial structures through a collection of fictitious harmonic
oscillators coupled to the free-space EM field (which itself
corresponds to a collection of harmonic oscillators [51]).
Formally diagonalizing this system of coupled harmonic
oscillators leads to a form where the linear response of the
medium can be expressed through the coupling between
the material oscillators and the EM field. The end result is
that the fully quantized medium-supported EM field is
represented by an infinite set of bosonic modes defined at
each point in space and each frequency and labeled with

index A (see below), f; (r, w), which act as sources for the
EM field through the classical Green’s function. These
modes are called “polaritonic” as they represent mixed
light-matter excitations [17]. While this is a completely
general approach for quantizing the EM field in arbitrary
structures, it cannot be used “directly” in practice owing to
the extremely large number of modes that describe the EM
field (a vectorial-valued four-dimensional continuum).
Most uses of macroscopic QED thus apply this formalism to

derive expressions where the explicit operators ﬂ (r,w)
have been eliminated, e.g., through adiabatic elimination,
perturbation theory, or the use of Laplace transform tech-
niques [22-24, 52-55]. In particular, macroscopic QED has
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been widely used in the context of dispersion forces, which
are responsible for, e.g., the Casimir effect and Casimir—
Polder force [23, 24].

2.1 Minimal coupling

In the following, we represent a short overview of the
general theory of light-matter interactions in the frame-
work of macroscopic QED. Since full details can be found in
the literature [22, 23], we do not attempt to make this a fully
self-contained overview, but rather highlight and discuss
some aspects that are not within the traditional focus of
the theory, in particular in the context of quantum
nanophotonics.

The first step in the application of macroscopic QED is
the separation of all matter present in the system to be
treated into two distinct groups: one is the macroscopic
structure (e.g., a cavity, plasmonic nanoantenna, photonic
crystal, ...) that will be described through the constitutive
relations of electromagnetism, while the other are the
microscopic objects (atoms, molecules, quantum dots, ...)
that are described as a collection of charged particles. This
separation constitutes the basic approximation inherent in
the approach and relies on the assumptions that macro-
scopic electromagnetism is valid for the material structure
(the medium) and its interaction with the charged particles.
While this is often an excellent approximation, some care
has to be taken for separations in the subnanometer range,
where the atomic structure of the material can have a sig-
nificant influence [56-61]. One significant advantage of
this approach is that the microscopic objects are governed
by the “standard” Hamiltonian of charged particles inter-
acting through the Coulomb force. They can thus be rep-
resented using standard approximations, e.g., using the
methods of atomic and molecular physics and quantum
chemistry to obtain few-level approximations, or also of
solid-state physics to obtain effective descriptions of their
band structure, although care has to be taken with gauge
invariance when such approximations are performed [62].

For simplicity, we assume that the medium response is
local and isotropic in space, such that it can be encoded in
the position- and frequency-dependent scalar relative
permittivity e(r,w) and relative permeability u(r, w) that
describe the local matter polarization and magnetization
induced by external EM fields'. The extension of the
quantization scheme to nonlocal response functions can be

1 Note that since the response functions are considered time inde-
pendent, effects due to the motion of the structure, such as in cavity
optomechanics [63], cannot be treated without further modifications.
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found in reference [22]. We directly give the Hamiltonian
H = Ha + Hr + Har within the minimal coupling scheme
[22, 23]

~2
pa qaqﬁ
=)— e 1

HA §2ma * a B>a 47T£0|fa - fﬁl ( a)

=Y [dow | d3rhwf; (x, ), (1, w), (1b)
Ao

~ g2 <2
HAF - Z qa(pb (ra) - 7pa A(ra) + EA (ra) . (1C)

Here, the “atomic” Hamiltonian H, describes a (nonrela-
tivistic) collection of point particles with position and
momentum operators ¥, and p, and charges and masses g,
and m,. The field Hamiltonian Hr is expressed in terms of
the bosonic operators fA (r, w) discussed above, which obey
the commutation relations

[ﬂ (r,w). £y (v, w’)] =8, 6(r-r)S(w-w) ()

[f (). B, (0,0)] = [f; rw).f (o) =0, (@)
where 8 (r —v’) = 6 (x — 1)1, and 1 and 0 are the Cartesian
(3 x 3) identity and zero tensors, respectively. The index
A € {e,m} labels the electric and magnetic contributions,
with the magnetic contribution disappearing if u(r,w) =1
everywhere in space. The particle-field interaction Hamil-
tonian H,r contains the interaction of the charges both
with the electrostatic potential (f) (r) and the vector poten-
tial A(r), both of which can be expressed through the
fundamental operators f,(r,w) [22, 23]. Note that in the
above, we have neglected magnetic interactions owing to
particle spin. We explicitly point out that although we work
in Coulomb gauge, V - A(¥) = 0, the electrostatic potential
¢ (1) is in general nonzero owing to the presence of the
macroscopic material structure, which also implies that the
name “p - A-gauge,” which is sometimes employed for the
minimal coupling scheme, is misleading in the presence of
material bodies.

The light-matter interaction Hamiltonian can be
simplified in the long-wavelength or dipole approxima-
tion, i.e., if we assume that the charged particles are suf-
ficiently close to each other compared to the spatial scale of
local field variations that a lowest order approximation of
the positions of the charges relative to their center of mass
position ¥; is valid. For an overall neutral collection of
charges, this leads to

d (rl) - Z_pa . )

SER . O

a
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where d = Zaq(ja is the electric dipole operator of the
collection of charges, while ¥, and ﬁa are the position and
momentum operators in the center-of-mass frame of the
charge collection®. Equation (3) explicitly shows that in the
presence of material bodies, the emitter-field interaction
has two contributions, one from longitudinal (electrostatic)
fields owing to the Coulomb interaction with charges in the
macroscopic body and one from transverse fields
(described by the vector potential). The relevant fields are
given by
E” (f)

dw [ r'Gy(r,¥, w) (v, w)+He, (4a)

2
)

o—3

A®) = % | %’ | PrGi(x. ¥, w) i (r,w)+He, (4b)
0

where the longitudinal and transverse components of a
tensor T (r,v’) are given by

“T(r,r) = [’s 8" (r-$)T(s.1), (5)

with 8"+ (r —s) the standard longitudinal or transverse
delta function in 3D space. The functions G, (r,r’, w) are
related to the dyadic Green’s function G (r,v’, w) through

G (l’ r (U) =i Ime(r’ w)G(r r (.U) (63)
e\L L, > > >, W),
G (l' r (1)) =i— 711'[1]11(1" w)[v'xG(l"l‘w)]
m > > > &> .

(6b)

We note that in the derivation leading to the above expres-
sions, it is assumed that Ime(r,w) >0 and Imu(r,w) >0
for all r, i.e., that the materials are lossy everywhere in
space. The limiting case of zero losses in some regions (e.g.,
in free space) is only taken at the very end of the calculation.
We will see that in the reformulation in terms of emitter-
centered modes, subsection 2.4, G, (1, ¥/, w) disappears from
the formalism relatively early, and only the “normal”
Green’s function G (r,1’, w) is needed (for which the limit is
straightforward).

As mentioned above, the electrostatic contribution is
not present in free space, and in the literature, it is often
assumed that any abstract “cavity mode” corresponds to a
purely transverse EM field. This is a good approximation

2 While we here assumed a single emitter (i.e., a collection of close-by
charged particles), the extension of the above formula to multiple
emitters is trivial. One important aspect to note is that the electrostatic
Coulomb interaction between charges (second term in Eq. (1a)) is still
present, i.e., there are direct instantaneous Coulomb interactions be-
tween the charges in different emitters.

J. Feist et al.: Macroscopic QED for quantum nanophotonics

DE GRUYTER

for emitters that are far enough away from the material,
e.g., in “large” (typically dielectric) structures such as
Fabry-Perot planar microcavities, photonic crystals,
micropillar resonators, etc. [64], but can break down
otherwise. In general, this happens for coupling to
evanescent fields [65] and in particular when sub-
wavelength confinement is used to generate extremely
small effective mode volumes, such as in plasmonic [66,
67] or phonon-polaritonic systems [68, 69]. This observa-
tion is particularly relevant as such subwavelength
confinement is the only possible strategy for obtaining
large enough light—-matter coupling strengths to approach
the single-emitter strong coupling regime at room tem-
perature [70-73]. For subwavelength separations, it is well
known that the Green’s function is dominated by longitu-
dinal components, while transverse components can be
neglected [74]. In this quasistatic approximation, we thus
have A = 0, cf. Eq. (4), and the light-matter interactions are
all due to electrostatic (or Coulomb) interactions, even
within the minimal coupling scheme®. Conversely, owing
to the strongly subwavelength field confinement, the long-
wavelength or dipole approximation is not necessarily
appropriate, and an accurate description requires either
the direct use of the expression in terms of the electrostatic
potential [75] or the inclusion of higher order terms in the
interaction [76]. In this context, it should be noted that
within an ab initio description (i.e., when the emitters are
not treated as few-level systems), the term —d.-B ()
within the dipole approximation can be problematic as,
e.g., the interaction can become arbitrarily large when the
computational box is too big, which in particular affects
the more extended excited states, but even leads to the lack
of a ground state in infinite space [28, 33]. For the electro-
static (longitudinal) interactions considered here, this has
to be resolved by going beyond the dipole approximation,
such that the potential is accurately represented within the
whole computational box and in particular disappears at
large distances to the material [35]. It is also important to
keep in mind that in any case, the approximations inherent
in macroscopic QED, i.e., that the emitter wave functions
do not overlap with the material part, break down for large
computational boxes for the emitter wave function.

3 It could then be discussed what the field modes should be called in
the limit when they contain negligible contributions from propagating
photon modes. However, since all EM modes that are not just freely
propagating photons will always have a somewhat mixed light-mat-
ter character, and since these modes always solve the macroscopic
Maxwell equations, they are conventionally referred to as “light,”
“EM,” or “photon” modes. It is thus important to remember that this
does not imply that they are simply modes of the transverse EM field.
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2.2 Multipolar coupling

We now discuss the PZW gauge transformation [77-79],
which is used to switch from the minimal coupling scheme
discussed up to now to the so-called multipolar coupling
scheme, which will then in turn form the basis for the
emitter-centered modes we discuss later. This scheme has
several advantageous properties: it expresses all light-
matter interactions through the fields E and B directly,
without needing to distinguish between longitudinal and
transverse fields and allows a systematic expansion of the
field-emitter interactions in terms of multipole moments.
Additionally, in the multiemitter case, it also removes
direct Coulomb interactions between charges in different
emitters, which instead become mediated through the EM
fields. This property makes it easier to explicitly verify and
guarantee that causality is not violated through faster-
than-light interactions. We only point out and discuss
some specific relevant results here and again refer the
reader to the literature for full details [22, 23]. The PZW
transformation is carried out by the unitary transformation
operator

i - -
U=exp|. [dryPi(n)-Am @
i
where we have explicitly grouped the charges into several
emitters, i.e., distinct (nonoverlapping) collections of
charges, labeled with index i. The polarization operator
P; (r) of emitter i is usually defined as

1
Pi(r) = Y.q,T, [ dob(r - F; - o%,), 8)

el 0
where t; is the center-of-mass position operator of emitter i
and ix =T, —T;is the relative position operator of charge a
belonging to emitter i. We note that there is considerable
freedom in choosing a definition for P; (r) as only its lon-
gitudinal component is physical. There are subtle issues
associated with this choice, in particular, owing to the
assumption of a point charge model and the lack of a UV
cutoff leading to singular expressions. These issues are not
specific to macroscopic QED, but general to the PZW
transformation and have been discussed in detail in the

literature [29, 80].

Since Eq. (7) describes a unitary transformation,
physical results are unaffected in principle, although the
convergence behavior with respect to different approxi-
mations can be quite different [26, 36]. Applying the

transformation gives the new operators 0 =000".
Expressing the Hamiltonian Eq. (1) in terms of these new
operators then gives the multipolar coupling form. The
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effect can be summarized by noting that the operators A
and ¥, are unchanged, while their canonically conjugate
momenta II and P, are not. In light of the discussion of
longitudinal (electrostatic) versus transverse interactions,
it is interesting to point out that the electrostatic potential
@(r) is also unaffected, i.e., in the quasistatic limit, the
PZW transformation has no effect on the emitter-field
interaction and discussions of gauge dependence for this
specific case become somewhat irrelevant. However, both
the bare-emitter and the bare-field Hamiltonian are
changed, as fA (r,a))';ef,\(r, w), i.e., the separation into
emitter and field variables is different than in the minimal
coupling scheme. We here directly show the multipolar
coupling Hamiltonian after additionally neglecting in-
teractions containing the magnetic field. This leads to

p, 1 3.2
Ha = z azﬂ_Zma o | &P ()|, (9a)
Hr = Zwa [ Lriwf) (x w)f, (rw), (9b)
Ao
Har ==Y [ CrPi(r) - E(v), (90)

where all operators are their PZW-transformed (primed)
versions, but we have not included explicit primes for
simplicity. In the long-wavelength limit, Eq. (9c) becomes
simply

Har = -Yd; - E (%), (10)
i.e., all field-emitter interactions are expressed through the
dipolar coupling term, with the electric field operator given
explicitly by

E(r) = szw [&r G 1, w)-fi(r, w)+He (1)
Ao

We note that the form of the bare-emitter Hamiltonian
Ha = Y;H; [Eq. (93)] under multipolar coupling is changed
compared to the minimal coupling picture and in partic-
ular can be rewritten as

~2
o 1
Hi=y P, 4u9p

2
S + _ N
aci2Mg a,ﬁei8ﬂ€0|ra - rﬂl 2g9

[dr [ﬁj (r)] (12)
which makes explicit the fact that the emitter Hamiltonian in
the multipolar gauge is equivalent to the emitter Hamilto-
nian in minimal coupling plus a term containing the trans-
verse polarization only. In order to arrive at this form, we
have used that the Coulomb interaction can be rewritten as
an integral over the longitudinal polarization. The trans-
verse part of the polarization in Eq. (12) corresponds to the
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so-called dipole self-energy term [28]. When a single- or few-
mode approximation of the EM field is performed before
doing the PZW transformation, this term depends on the
square of the mode-emitter coupling strength, but not on
any photonic operator. However, when all modes of the EM
field are included, as implicitly done here and as motivated
by the fact that the term is not mode selective (it does not
depend on any EM field operator), it is seen directly that this
term becomes completely independent of any characteris-
tics of the surrounding material structure, i.e., it cannot be
modified by changing the environment that the emitter is
located in. Instead, the bare-emitter Hamiltonian in the
multipolar approach is simply slightly different than under
minimal coupling. This raises the question whether in a few-
mode approximation, such a term should be included in
simulations of strongly coupled light-matter systems,
i.e., whether the few-mode approximation should be per-
formed before the PZW transformation or after [38].
Including the term improves some mathematical properties
of the dipole approximation, in particular in large compu-
tational boxes and/or for very large coupling strengths
[28, 33, 81]. However, it should also be remembered here that
in realistic cavities capable of reaching few-emitter strong
coupling, the dominant interaction term is due to longitu-
dinal fields, for which this term does not exist (see discus-
sion in subsection 2.1). Furthermore, it should be mentioned
that a similar term can arise if the environment-mediated
electrostatic interactions are taken into account explicitly
instead of through the quantized modes, and one (or some)
of the EM modes is additionally treated explicitly. The action
of these modes on the emitters then has to be subtracted
from the electrostatic interaction to avoid double counting
them [27].

2.3 External (classical) fields

Adapting an argument by Sanchez-Barquilla et al. [45],
here we show that macroscopic QED also enables a
straightforward treatment of external incoming EM fields,
in particular for the experimentally most relevant case of a
classical laser pulse. Assuming that the incoming laser
field at the initial time ¢ = O has not yet interacted with
the emitters (i.e., it describes a pulse localized in space in
a region far away from the emitters), it can simply
be described by a product of coherent states of the
EM modes for the initial wave function,
[ (0)) = [Tulatn (0)) = [T,% @%-% (0 |0), where the index
n here runs over all indices of the EM basis (A, ¥, w), and the
a,(0) correspond to the classical amplitudes obtained
when expressing the laser pulse in the basis defined by
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these modes. In order to avoid the explicit propagation of
this classical field within a quantum calculation, the clas-
sical and the quantum field can be split in the Hamiltonian
using a time-dependent displacement operator [82]
T(t) = eZnt (Va0 where a, (t) = ay (0)e"nt. Applying
this transformation to the wavefunction, |z,b') =T(0|y),
adds an (time-dependent) energy shift that does not affect
the dynamics and splits the electric field term in Eq. (10)
into a classical and a quantum part, E(®) =E@) +Eq(r,0).

We note that the above properties imply that within
this framework, the action of any incoming laser pulse on
the full emitter-cavity system can be described purely by
the action of the medium-supported classical electric field
on the emitters, with no additional explicit driving of any
EM modes. This is different to, e.g., standard input—output
theory, where the EM field is split into modes inside the
cavity and free-space modes outside, and external driving
thus affects the cavity modes®.

Importantly, E (r, t) is the field obtained at the posi-
tion of the emitter upon propagation of the external laser
pulse through the material structure, i.e., it contains any
field enhancement and temporal distortion. Since the

Hamiltonian expressed by the operators f,\(r, w) by con-
struction solves Maxwell’s equations in the presence of the
material structure, E;(r,t) can be obtained by simply
solving Maxwell’s equations using any classical EM solver
without ever expressing the pulse in the basis of the modes
f, (r,w). It is important to remember that EM field observ-
ables are also transformed according to

W|0fY) = W |T(t)OT (t)|y),

such that, e.g., ()|a.|p) = (l/)'|an +ay, (t)|l/)'). This takes into
account that the “quantum” field generated by the laser-
emitter interaction interferes with the classical pulse propa-
gating through the structure and ensures a correct descrip-
tion of absorption, coherent scattering, and similar effects.

(13)

2.4 Emitter-centered modes

Following references [39-44], we now look for a linear

transformation of the bosonic modes f,\ (r,w) at each fre-
quency in such a way that in the new basis, only a minimal

4 1t should be noted that in principle, both macroscopic QED and
input-output theory can provide for a complete description of the
system. In fact, a few-mode description suitable for treatment within
input-output theory or master equation formalisms can be obtained
from macroscopic QED by, essentially, “reversing” Fano diagonal-
ization and reexpressing the EM modes through a finite number of
discrete modes coupled to exterior continua [15, 47].
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number of EM modes couples to the emitters. To this end, we
start with the macroscopic QED Hamiltonian within the
multipolar approach Eq. (9), with the emitter-field interac-
tion treated within the long-wavelength approximation Eq.
(10). For simplicity of notation, we assume that the dipole
operator of each emitter only couples to a single-field po-

larization, ai = ji;n;. Alternatively, the sum over i could
simply be extended to include up to three separate orien-
tations per emitter. Our goal can then be achieved by
defining emitter-centered or bright (from the emitter

perspective) EM modes B; (w) associated with each emitter i:

Bi(w) =Y [ 1B, (rw) fi(r.w) (14a)
A
n; - G}l (ri) r, (U)

G (@) , (14b)

B, (rw) =
where G;(w) is a normalization factor. Using Eq. (2), the
commutation relations of the operators B;(w) reduce
to overlap integrals of their components, [B; ((u),]@’;r (w)] =
Sj(w)6(w - w’), with

Sij(w) = % J darﬂz/\ (rw)-B;,(r,w)

_ hw? n; - ImG(ri,r]’, (U) ]

"~ ey c? Gi (w)G;(w) ’ (15)

such that the overlap matrix S; (w) at each frequency is real
and symmetric (since G (1, ¥, w) = G” (¥, x, w)). In the above
derivation, we have used the Green’s function identity

d3G S, _G*T /,, _
%j sG,(r,s,w) -G, (r,s,w) —

2
hw _ImG(r,¥,w) (16)
oC

to obtain a compact result [22, 23]. The normalization factor
G; (w) is obtained by requiring that S; (w) = 1, so

1)

hw?
Gi(w) = \/F()Czni -ImG(r;, 1, w) - ;.

We note that the coupling strength G;(w) of the emitter-
centered mode B; (w) to emitter i is directly related to the
EM spectral density J;(w) = [uG;(w)/h)* for transition
dipole moment u [83]. In the regime of weak coupling,
i.e., when the EM environment can be approximated as a
Markovian bath, the spontaneous emission rate at an
emitter frequency w, is then given by 27J;(w.,).

Since the overlap matrix Sj(w) of the modes associated
with emitters i and j is determined by the imaginary part of
the Green’s function between the two emitter positions,
it follows that the modes B;(w), or equivalently, the
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coefficient functions f; (r,w), are not orthogonal in gen-
eral. This can be resolved by performing an explicit
orthogonalization, which is possible as long as the modes
are linearly independent. When this is not the case, linearly
dependent modes can be dropped from the basis until a
minimal set is reached [42]. In the following, we thus
assume linear independence. We can then define new
orthonormal modes C; (w) as a linear superposition of the
original modes (and vice versa)

—~ N N
Ci(w) = ZlVi;(a))Bi(w), (18a)
j=
N
Xia(rw) = ;Vi; (W)B; , (r, w), (18b)
j=

which also implies that B;(w) = ¥\, W (w)C;j(w), where
W (w) = V(w)™. In the above, the transformation matrix
V(w) is chosen such that [C;(w), C‘; (w))] = 66 (w — W),
which implies V(w)S(w)V'(w)=1. The coefficient
matrices V(w) can be chosen in various ways, corre-
sponding to different unitary transformations of the same
orthonormal basis. We mention two common approaches
here. One consists in performing a Cholesky decomposition
of the overlap matrix, S(w)=L(w)L'(w), with
V(w) = L(w)™, where L (w) and L (w) " are lower triangular
matrices. This is the result obtained from Gram-Schmidt
orthogonalization, with the advantage that Ci(w) only in-
volves Ej(w) with j <i and vice versa, such that emitter i
only couples to the first i photon continua. Another pos-
sibility is given by Lowdin orthogonalization, with
V(w) =S(w)™, where the matrix power is defined as
$* = UA“U', with U(A) a unitary (diagonal) matrix con-
taining the eigenvectors (eigenvalues) of S. This approach
maximizes the overlap [C; (w),B: (w)] while ensuring
orthogonality and can thus be seen as the “minimal”
correction required to obtain an orthonormal basis.

Using the orthonormal set of operators C; (w), which are
themselves linear superpositions of the operators ﬂ (r,w),
we can perform a unitary transformation (separately for each
frequency w) of the £, (r,w) into a basis spanned by the
emitter-centered (or bright) EM modes and an infinite num-
ber of “dark” modes D;(w) that span the orthogonal sub-
space and do not couple to the emitters, such that

. N _ _
fir,w) = %X;J(r, w)Ci (w) + Zd;,l(r, w)D; (w). (19)
i= ]

where [d’rd; (r,w)- x;(r,w) =0. The Hamiltonian can
then be written as
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%hwc (w) C (w) +Zth (a))D (w)

II
o'—a8

H (20)

?MZ
||Mz

1(g; ()G (w) +He) | +

ij=1

where g; (w) = G;(w)W;; (w). We note here that V(w) and
thus W (w) and g; (w) can always be chosen real owing to
the reality of S; (w), but we here treat the general case with
possibly complex coefficients. Since the dark modes are
decoupled from the rest of the system, they do not affect the
dynamics and can be dropped, giving

H = % ,+Td [Zth (w)Ci (w)
i=1 0 i=1

1)

MZ

7i(g; (w)C; (w) + Hee. )]

H
.i

if

We mention for completeness that if the dark modes are
initially excited, including them might be necessary to fully
describe the state of the system. We have now explicitly
constructed a Hamiltonian with only N independent EM
modes C; (w) for each frequency w [39-44]. This Hamilto-
nian corresponds to a set of N emitters coupled to N con-
tinua and can be treated using, e.g., a wide variety of
methods developed in the context of open quantum sys-
tems [84-87].

Furthermore, one can obtain an explicit expression for
the electric field operator based on the modes C; (w), which
to the best of our knowledge has not been presented pre-
viously in the literature. This is obtained by inserting Eq.
(19) in Eq. (11), again dropping the dark modes D; (w) and
again using the integral relation for Green’s functions from
Eq. (16), leading to

=)

(r)= (22a)

™M=
o—3

dwE; (r,w)Ci (w)

I
SN

i

N
Ei(r,w) = Y Vi (w)g(r, w) (22b)

j=1
ho? ImG(r 1, w) - 0
7T€(C? Gj(w)

These relations show that we can form explicit photon
modes in space at each frequency by using orthonormal
superpositions of the emitter-centered EM modes & (r, w).
We note that this also provides a formal construction for
the emitter-centered EM modes, i.e., the modes created by
the operators B (w), with a field profile corresponding to
the imaginary part of the Green’s function associated with
that emitter. These modes are well behaved: they solve the
source-free Maxwell equations, are real everywhere in

&(r,w) = (22¢c)
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space, and do not diverge anywhere (here, it should be
remembered that the real part of the Green’s function di-
verges for r = ¥/, while the imaginary part does not). As a
simple example, we can take a single z-oriented emitter at
the origin in free space. The procedure used here then gives
exactly the [ =1, m = 0 spherical Bessel waves, i.e., the only
modes that couple to the emitter when quantizing the field
using spherical coordinates. Furthermore, it should be
noted that these modes contain the absorption of the EM
field in the material, which is encoded in the Green’s
function that solves the macroscopic Maxwell equations
including losses. This can be understood by remembering
that macroscopic QED can be seen as solving the dynamics
of an infinite set of coupled harmonic oscillators corre-
sponding to the EM modes and material excitations
(including reservoir modes that describe dissipation), cf.
subsection 2. Since the coupled system consists only of
harmonic oscillators, this problem can be diagonalized
without approximations (i.e., without using a master
equation or similar formalisms), resulting in a description
of the full system in terms of continua of oscillators. The
electric field operator as described by Eq. (22) can then be
seen as a projection of the full solution onto the field
subspace [23]. The end effect of this is that although the
Hamiltonian, Eq. (21), is Hermitian, dissipation in the ma-
terial is fully included. Finally, we note that it can be
verified easily that inserting Eq. (22) in Eq. (9) and simpli-
fying leads exactly to Eq. (21).

3 Example

As an example, we now treat a complex metallodielectric
structure, as shown in Figure 1. It is composed of a
dielectric microdisk resonator supporting whispering gal-
lery modes, with a metallic sphere dimer antenna placed
within. The SiN (e = 4) disk is similar to that considered in
Ref. [50], with a radius of 2.03 pm and a height of 0.2 pm.
Two 40-nm-diameter Ag (with permittivity taken from Ref.
[88]) nanospheres separated by a 2-nm gap are placed
1.68 pm away from the disk axis. Two point-dipole emitters
modeled as two-level systems and oriented along the dimer
axis are placed in the central gap of the dimer antenna and
just next to the antenna (labeled as points 1 and 2 in
Figure 1). Their transition frequencies are chosen as
We,1 = We,7 = 2€V, while the dipole transition moments are
M, = 0.1 e nm and yu, = 3 e nm (roughly corresponding to
typical single organic molecules and J-aggregates,
respectively [89]). As shown in the theory section, the
emitter dynamics are then fully determined by the Green’s
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function between the emitter positions (as also found in
multiple scattering approaches [54]). In Figure 2, we show
the relevant values n; - Im G (r;, 1j, ) - n;, which clearly re-
veals the relatively sharp Mie resonances of the dielectric
disk, hybridized with the short-range plasmonic modes of
the metallic nanosphere dimer. In addition, it also shows
that the coupling between the two emitters, i.e., the off-
diagonal term with i =1, j = 2, has a significant structure and
changes sign several times within the frequency interval.
We now study the dynamics for the Wigner—Weisskopf
problem of spontaneous emission of emitter 1, i.e., for the
case where emitter 1 is initially in the excited state, while
emitter 2 is in the ground state and the EM field is in its
vacuum state, such that [ (¢t = 0)) = 07|0), where |0} is the
global vacuum without any excitations and o7 is a Pauli
matrix acting on emitter 1. We also treat the light—-matter
coupling within the rotating wave approximation (RWA),
i.e., we use Z%:lﬂi (83 (w)o*(?i (w) + H.c.) as the light-
matter interaction term. The number of excitations is then
conserved, and the system can be solved easily within the
single-excitation subspace by discretizing the photon
continua in frequency [51]. The resulting emitter dynamics,
i.e., the population of the excited states of the emitters, are
shown in Figure 3. This reveals that the EM field created by
emitter 1 due to spontaneous emission is partially reab-
sorbed by emitter 2. Comparison with the dynamics of
emitter 1 when emitter 2 is not present (shown as a dashed

S
9nm
40 nm ™~ S
2nm
40 nm =

Figure 1: Sketch of the hybrid metallodielectric structure we treat: a
dielectric microdisk resonator with a metallic dimer antenna placed
on top. The positions of the two emitters are indicated by points 1
and 2, while the field evaluation point used later is indicated as
point 3.
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Figure 2: Green’s function factor n; - Im G(r;, r;, w) - n; connecting
the two emitters in the geometry of Figure 1.

blue line in Figure 3) furthermore reveals that there is also
significant transfer of the population back from emitter 2 to
emitter 1. We note that while the system treated here is in
the weak coupling regime and no Rabi oscillations are
present, the method works equally well under strong light—
matter coupling [45—-47]. Within the RWA employed here,
the emitter populations for long times go to zero. Without
the RWA, the ground state of the system would be a dressed
state with an energy shift corresponding exactly to the
Casimir—Polder potential of the emitter in the structure
(usually calculated within lowest order perturbation the-
ory) [23]. In our example, the final state at long times would
then be the new dressed ground state plus a wave packet of
photons emitted into free space. Furthermore, since the
number of excitations (in the uncoupled basis) is not
conserved without the RWA, the initial state 07]0) would
actually have nonzero probability of emitting multiple
photons. When the dressing is sufficiently large, the so-
called ultrastrong coupling regime is entered [90]. We note
for completeness that the theory presented here can treat
this regime without problems. In fact, since ultrastrong
coupling effects do not depend on (approximate) reso-
nance between modes and levels, taking into account the
full spectrum of EM modes is particularly important, and
macroscopic QED is thus particularly well suited to treat
such effects.

The direct access to the photonic modes in this
approach provides interesting insight into, e.g., the pho-
tonic mode populations, which are shown in Figure 4 at the
final time considered here, t = 1000 fs. As mentioned
above, there is some freedom in choosing the ortho-
normalized continuum modes Cj(w) as any linear super-
position of modes at the same frequency is also an
eigenmode of the EM field. We have here chosen the modes
obtained through Gram-Schmidt orthogonalization,
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Figure 3: Population of emitters 1 (black line) and 2 (orange line) for
the Wigner-Weisskopf problem, with emitter 1 initially excited. The
blue dashed line shows the dynamics of emitter 1 if emitter 2 is not
present.

which, as discussed above, have the advantage that emitter
i only couples to the first i photon continua. In particular,
emitter 1 only couples to a single continuum, C; (w), while
emitter 2 couples to the same continuum, and additionally
to its “own” continuum C, (w). This makes the comparison
between the case of having both emitters present or only
including emitter 1 quite direct, as can be observed in
Figure 4. In particular, any population in the modes C, (w)
must come from emitter 2, after it has in turn been excited
by the photons emitted by emitter 1 into continuum 1.
Finally, we also evaluate the electric field in time at a
third position (indicated as point 3 in Figure 1), as deter-
mined by Eq. (22). This is displayed in Figure 5 and shows a

— Ci,em. 1 &2
Cy,em. 1 & 2
60 |
C1, only em. 1
~ -==- (Cy, only em. 1
E 40 -
g
20 \
/
/ \
N
r‘/ M ——
0 a='=ﬂﬂlea‘;‘;____r_—_____7———_—_—T__:LL{-LI:L&_-
1.96 1.98 2.00 2.02 2.04
w (eV)

Figure 4: Population (CIT (w)Cj (w)) of electromagnetic (EM) modes at
time t = 1000 fs in the presence of both emitters (solid black and
orange lines) and in the presence of only emitter 1 (dashed blue and
green lines). Gram—-Schmidt orthogonalization has been used here,
so that emitter 1 only couples to continuum 1 (i.e., populations for
j=2areidentically zero when emitter 2 is not present), while emitter
2 couples to both continua.
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Figure 5: Time-dependent electric field intensity |E|? at position 3 in
Figure 1, for the case when both emitters are present (black solid
line) and when only emitter 1 is present (orange dashed line).

broad initial peak due to the fast initial decay of emitter 1
(filtered by propagation through the EM structure, with
clear interference effects visible) and then a longer tail due
to the longer-lived emission from both emitters, which is
mostly due to emitter 2 (which is less strongly coupled to
the EM field) and its backfeeding of the population to
emitter 1.

4 Conclusions

In this article, we have presented a general overview of the
application of the formalism of macroscopic QED in the
context of quantum nanophotonics. Within this research
field, it is often mandatory to describe from an ab initio
perspective how a collection of quantum emitters interacts
with a nanophotonic structure, which is usually accounted
for by utilizing macroscopic Maxwell equations. Macro-
scopic QED then needs to combine tools taken from both
quantum optics and classical electromagnetism. After the
presentation of the general formalism and its approxima-
tions, we have reviewed in detail the steps to construct a
minimal but complete basis set to analyze the interaction
between an arbitrary dielectric structure and multiple
quantum emitters. This minimal basis set is formed by the
so-called emitter-centered modes, such that all the infor-
mation regarding the EM environment is encoded into the
EM dyadic Green’s function, which can be calculated using
standard numerical tools capable of solving macroscopic
Maxwell equations in complex nanophotonic structures.
As a way of example and to show its full potential, in the
final part of this article, we have applied this formalism to
solve both the population dynamics and EM field genera-
tion associated with the coupling of two quantum emitters
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with a hybrid plasmodielectric structure composed of a
dielectric microdisk within which a metallic nanosphere
dimer is immersed. We emphasize that this formalism can
be used not only to provide exact solutions to problems in
quantum nanophotonics but also to serve as a starting
point for deriving simpler models and/or approximated
numerical treatments.
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